Ribulose 1,5-Diphosphate Carboxylase Synthesis in Euglena: II. Effect of Inhibitors on Enzyme Synthesis during Regreening and Subsequent Transfer to Darkness.

نویسندگان

  • J M Lord
  • T L Armitage
  • M J Merrett
چکیده

Dark-grown Euglena gracilis Klebs strain Z Pringsheim cells, which have been partially regreened in the light, show a striking, continued synthesis of the chloroplast enzyme ribulose 1,5-diphosphate carboxylase on transfer back into darkness. This dark synthesis of the enzyme was completely prevented by the addition of 15 mug/ml of cycloheximide to the culture medium but was unaffected, for at least 8 hours, by the addition of 1 mg/ml of d-threo-chloramphenicol. The addition of either cycloheximide or d-threo-chloramphenicol to dark-grown cultures at the onset of illumination completely inhibited the light-induced synthesis of ribulose 1,5-diphosphate carboxylase. When cells which had been illuminated in the presence of d-threo-chloramphenicol, and hence were unable to synthesize ribulose 1,5-diphosphate carboxylase, were transferred to darkness in the absence of this inhibitor, synthesis of the carboxylase then occurred. Dark-grown cells which had been illuminated in the presence of cycloheximide failed to synthesize the enzyme when placed in the dark in the absence of cycloheximide. The addition of 5-fluorouracil to regreening cultures to prevent light-induced transcriptional steps completely blocked the synthesis of ribulose 1,5-diphosphate carboxylase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ribulose diphosphate carboxylase synthesis in euglena: increased enzyme activity after transferring regreening cells to darkness.

The transfer of dark-grown cultures of Euglena gracilis Klebs strain Z regreening in the light back into darkness resulted in a dramatic increase in ribulose diphosphate carboxylase activity. On a culture volume basis activity increased 4-fold over a 24-hour dark period, although on a protein basis activity declined because of rapid cell division. Mixed assays with light- and dark-growing cell ...

متن کامل

Ribulose Diphosphate Carboxylase Synthesis in Euglena: III. Serological Relationships of the Intact Enzyme and its Subunits.

Ribulose 1,5-diphosphate carboxylase was isolated from Euglena gracilis Klebs strain Z Pringsheim, Chlorella fusca var. vacuolata, and Chlamydobotrys stellata, and the subunits from each enzyme were separated and purified by gel filtration on Sephadex G-200 in the presence of sodium dodecyl sulfate. Rabbit antibody was elicited against purified Euglena ribulose 1,5-diphosphate carboxylase whole...

متن کامل

Loss of Ribulose 1,5-Diphosphate Carboxylase and Increase in Proteolytic Activity during Senescence of Detached Primary Barley Leaves.

Symptoms typical of senescence occurred in green detached primary barley (Hordeum vulgare L.) leaves placed in darkness and in light. Chlorophyll, total soluble protein, ribulose 1,5-diphosphate carboxylase protein and activity each progressively decreased in darkness and to a lesser extent in light. In all treatments most of the total soluble protein lost was accounted for by a decrease in rib...

متن کامل

Evidence for in vivo Light-induced Synthesis of Ribulose-1,5-diP Carboxylase and Phosphoribulokinase in Greening Barley Leaves.

WHEN ACTINOMYCIN D, PUROMYCIN, STREPTOMYCIN, CHLORAMPHENICOL, AND CYCLOHEXIMIDE, KNOWN INHIBITORS OF PROTEIN SYNTHESIS, WERE APPLIED TO LEAVES OF INTACT SEEDLINGS OR DETACHED LEAVES OF BARLEY PRIOR TO THEIR GREENING, THE SAME GENERAL RESPONSE RESULTED: the light-induced increase in activity of ribulose 1,5-diphosphate carboxylase was prevented while that of phosphoribulokinase was only partiall...

متن کامل

Evidence for lack of turnover of ribulose 1,5-diphosphate carboxylase in barley leaves.

Turnover of ribulose 1,5-diphosphate carboxylase in barley leaves (Hordeum vulgare L.) was followed over time in light and dark. The enzyme was degraded in prolonged darkness and was resynthesized after the plants were returned to light. Labeling with (14)C showed that simultaneous synthesis and degradation (turnover) did not occur in light. In contrast, the remaining soluble protein was turned...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 56 5  شماره 

صفحات  -

تاریخ انتشار 1975